81 research outputs found

    Dynamics of colloidal particles in ice

    Get PDF
    We use X-ray Photon Correlation Spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high-particle-density, where some of the colloids were forced into contact and formed disordered aggregates. We find that the particles in these high density regions underwent ballistic motion coupled with both stretched and compressed exponential decays of the intensity autocorrelation function, and that the particles’ characteristic velocity increased with temperature. We explain this behavior in terms of ice grain boundary migration

    Elasticity of spheres with buckled surfaces

    Full text link
    The buckling instabilities of core-shell systems, comprising an interior elastic sphere, attached to an exterior shell, have been proposed to underlie myriad biological morphologies. To fully discuss such systems, however, it is important to properly understand the elasticity of the spherical core. Here, by exploiting well-known properties of the solid harmonics, we present a simple, direct method for solving the linear elastic problem of spheres and spherical voids with surface deformations, described by a real spherical harmonic. We calculate the corresponding bulk elastic energies, providing closed-form expressions for any values of the spherical harmonic degree (l), Poisson ratio, and shear modulus. We find that the elastic energies are independent of the spherical harmonic index (m). Using these results, we revisit the buckling instability experienced by a core-shell system comprising an elastic sphere, attached within a membrane of fixed area, that occurs when the area of the membrane sufficiently exceeds the area of the unstrained sphere [C. Fogle, A. C. Rowat, A. J. Levine and J. Rudnick, Phys. Rev. E 88, 052404 (2013)]. We determine the phase diagram of the core-shell sphere's shape, specifying what value of l is realized as a function of the area mismatch and the core-shell elasticity. We also determine the shape phase diagram for a spherical void bounded by a fixed-area membrane.Comment: 18 pages, 10 figures, submitted to Physical Review

    The Boltzmann factor, DNA melting, and Brownian ratchets: Topics in an introductory physics sequence for biology and premedical students

    Full text link
    Three, interrelated biologically-relevant examples of biased random walks are presented: (1) A model for DNA melting, modelled as DNA unzipping, which provides a way to illustrate the role of the Boltzmann factor in a venue well-known to biology and pre-medical students; (2) the activity of helicase motor proteins in unzipping double-stranded DNA, for example, at the replication fork, which is an example of a Brownian ratchet; (3) force generation by actin polymerization, which is another Brownian ratchet, and for which the force and actin-concentration dependence of the velocity of actin polymerization is determined

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    X-ray Near Field Speckle: Implementation and Critical Analysis

    Get PDF
    We have implemented the newly-introduced, coherence-based technique of x-ray near-field speckle (XNFS) at 8-ID-I at the Advanced Photon Source. In the near field regime of high-brilliance synchrotron x-rays scattered from a sample of interest, it turns out, that, when the scattered radiation and the main beam both impinge upon an x-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrate its capability for studying static structures and dynamics at longer length scales than traditional far field x-ray scattering techniques. Specifically, we characterized the structure and dynamics of dilute silica and polystyrene colloidal samples. Our study reveals certain limitations of the XNFS technique, which we discuss.Comment: 53 pages, 16 figure

    Evolution of particle-scale dynamics in an aging clay suspension

    Full text link
    Multispeckle x-ray photon correlation spectroscopy was employed to characterize the slow dynamics of a colloidal suspension formed by highly-charged, nanometer-sized disks. At scattering wave vectors qq corresponding to interparticle length scales, the dynamic structure factor follows a form f(q,t)exp[(t/τ)βf(q,t) \sim \exp[-(t/\tau)^{\beta}], where β\beta \approx 1.5. The characteristic relaxation time τ\tau increases with the sample age tat_a approximately as τta1.8\tau \sim t_a^{1.8} and decreases with qq approximately as τq1\tau \sim q^{-1}. Such a compressed exponential decay with relaxation time that varies inversely with qq is consistent with recent models that describe the dynamics in disordered elastic media in terms of strain from random, local structural rearrangements. The amplitude of the measured decay in f(q,t)f(q,t) varies with qq in a manner that implies caged particle motion at short times. The decrease in the range of this motion and an increase in suspension conductivity with increasing tat_a indicate a growth in the interparticle repulsion as the mechanism for internal stress development implied by the models.Comment: 4 pages, includes 4 postscript figures; accepted for publication in Phys Rev Let
    corecore